
OCaPIC tutorial
Version 1.2

Programming PIC microcontrollers with OCaml

Benoı̂t Vaugon

April 19, 2012

English translation: Zoé Faget

1 Introduction

OCaPIC is a set of programs and libraries allowing programming PIC microcontrollers in
OCaml. All OCaml features are available on PIC. OCaPIC provides the major parts of the
standard OCaml library as well as specific PIC libraries allowing direct interaction with hard-
ware interruption, LCD display, serial connection. . .

Furthermore, OCaPIC holds a simulation mechanism in which one can improve an OCaml
program before transferring it on the PIC.

For further information, please refer to OCaPIC’s website

http://www.algo-prog.info/ocapic/

2 Installation

2.1 Prerequisites

• Any C-compiler (for example gcc).

• The standard OCaml compiler provided by INRIA (http://ocaml.org/). On most Linux
distribution it is sufficient to install the ocaml package.

• A PIC assembler in order to convert OCaPIC generated assemblers files (.asm) into hex-
adecimal code (.hex), to be transferred on the PIC. The gpasm program which comes with
the gputils Linux package is a possible option.

2.2 Downloading

From the OCaPIC website: http://www.algo-prog.info/ocapic/, Download section, down-
load the latest available version. You should get a file named ocapic-X.Y.tar.bz2 (replace
X.Y by the version number).

2.3 Installation

Here is a guideline to install OCaPIC on Linux. The Windows installation is also possible
thanks to Cygwin.

In a terminal window (each time replacing X.Y by the version number):

• Extract the downloaded file ocapic-X.Y.tar.bz2:

tar jxf ocapic-X.Y.tar.bz2

• Go to the ocapic-X.Y directory:

cd ocapic-X.Y/

• Configure OCaPIC. This operation checks dependencies and allows to configure installa-
tion directories and managed PIC. Only PIC18F4620 is managed by default, because the
compilation of the interface with each PIC is very long. For more details please refer to
the INSTALL file:

./configure

• Compile OCaPIC :

make

• Install OCaPIC (as super-user) :

sudo make install

Or:

su

make install

2

3 Use examples

All examples featured in this tutorial are adapted to the PIC18F4620. Although all PIC of the
18F serie are supported, we recommend that you start with this one.

3.1 Blink a LED

We begin with a very simple example: how to blink a LED with a PIC. There is of course very
little interest in using a high-level language such as OCaml to do so, nor a microcontroller.
The purpose of this section is to highlight the different steps of PIC programming in OCaml.

OCaml source code:
Place the following OCaml code in a led.ml file:

1 open Pic;; (* Module containing write_reg, set_bit, RB0, ... *)
2

3 write_reg TRISB 0x00; (* Configure the B port as output *)
4

5 while true do
6 set_bit RB0; (* Turn on the LED *)
7 Sys.sleep 500; (* Wait 0,5s *)
8 clear_bit RB0; (* Turn off the LED *)
9 Sys.sleep 500; (* Wait 0,5s *)

10 done

PIC configuration:
It is necessary to specify several of PIC’s configuration options (programming voltage, clock

selection, external reset configuration, protected code segments selection, ...). To do so, place
the following code into a config.asm file:

1 config OSC = INTIO7
2 config PWRT = ON
3 config BOREN = OFF
4 config WDT = OFF
5 config MCLRE = OFF
6 config PBADEN = OFF
7 config STVREN = OFF
8 config LVP = OFF

Compilation:
Compile the led.ml file for PIC18F4620 with the following command:

ocapic 18f4620 config.asm led.ml

You should get, among others, the led.asm files (containing PIC assembler code) and led
(executable file used for simulation).

Simulation:
Simulate the execution of your program on PIC with the following command:

./led ocapic_dip40_simulator

You should get a window representing a PIC with a blinking B0 pin:

Since the program does not end (while true), kill it in the terminal window with Ctrl-C.

3

Assembling:
If you’re using gpasm, assemble the led.asm file with:

gpasm -y led.asm

This command generates, among others, the hexadecimal file led.hex to be transferred to
the microcontroller.

Remark : the -y option enables PIC’s “extended instructions set”. Make sure to enable this
option if you use another assembler than gpasm.

PIC programming:
You now have a led.hex file which can be directly transferred to the PIC through a “PIC

programmer”. If you are lucky enough to have a computer with serial port, you may use a
low cost “serial programmer” (or build one yourself with a few components). Otherwise, use
a USB programmer. The “USBPICPROG” project (http://usbpicprog.org/) helps getting and
making one at a reasonable price.

Circuit:
Connect a LED between the PIC’s B0 pin and the - of the power supply (through a resis-

tance, of course !), supply the PIC with 5V and you’re done !

4

3.2 Hello world on an LCD display

OCaPIC provides a library named Lcd which allows to operate on small LCD displays with a
PIC. For complete documentation, please refer to the corresponding manpage. Here is a short
example:

OCaml source code :
Place the following OCaml code in a hw.ml file:

1 open Pic;;
2

3 module Disp = Lcd.Connect (
4 struct (* LCD/PIC connection configuration: *)
5 let bus_size = Lcd.Four (* Bus size *)
6 let e = LATD0 (* Validation pin: D0 *)
7 let rs = LATD2 (* Instruction/data pin: D2 *)
8 let rw = LATD1 (* Read/write pin: D1 *)
9 let bus = PORTB (* Bus: port B *)

10 end
11);;
12

13 Disp.init ();; (* Display initialization *)
14 Disp.config ();; (* Display configuration *)
15 Disp.print_string "Hello world";; (* Display a string *)

PIC configuration:
As in section 3.1, place the following code of configuration in a config.asm file:

1 config OSC = INTIO7
2 config PWRT = ON
3 config BOREN = OFF
4 config WDT = OFF
5 config MCLRE = OFF
6 config PBADEN = OFF
7 config STVREN = OFF
8 config LVP = OFF

Compilation:
Compile hw.ml → hw, hw.asm :

ocapic 18f4620 config.asm hw.ml

Assemble hw.asm → hw.hex :

gpasm -y hw.asm

Simulation:
Execute the following command:

./hw ’ocapic_lcd_simulator 16x2 e=RD0 rs=RD2 rw=RD1 bus=PORTB’

You should get a window similar to this one:

Since this program does end, to stop the simulation, simply hit Enter in the terminal
window.

5

Circuit:
Connect an LCD display to the PIC in the following fashion:

Supply the PIC and the LCD display with 5V.

6

3.3 A small timer

This short example aims at showing how to use an interesting plug-in for simulation: the
“circuit” simulator. By “circuit” we mean the connection of a set of standard components to
the PIC (such as switches, push buttons, LED, . . .).

We intend to create here a small timer with an LCD display on which runs a time counter,
and several push buttons for adjusting time delay and start/stop time-out.

OCaml source code:
Place the following code in a timer.ml file:

1 open Pic;;
2

3 (* PIC clock speed-up *)
4 set_bit IRCF1;; set_bit IRCF0;; set_bit PLLEN;;
5

6 (* PIC/LCD display connection configuration *)
7 module Disp = Lcd.Connect (
8 struct
9 let bus_size = Lcd.Four

10 let e = LATD0
11 let rs = LATD2
12 let rw = LATD1
13 let bus = PORTC
14 end
15);;
16

17 (* Display initialization and configuration *)
18 Disp.init ();; Disp.config ();;
19

20 (* Counter (reference to an Int32) *)
21 let counter = ref 0l;;
22

23 (* Display utility *)
24 let print_02d n =
25 if n < 10 then Disp.print_char ’0’;
26 Disp.print_int n;
27 ;;
28

29 (* Displays counter’s value *)
30 let print () =
31 let t = !counter in
32 let t60 = Int32.div t 60l in
33 let s = Int32.to_int (Int32.rem t 60l) in
34 let m = Int32.to_int (Int32.rem t60 60l) in
35 let h = Int32.to_int (Int32.div t60 60l) in
36 Disp.moveto 0 0;
37 print_02d h;
38 Disp.print_char ’:’;
39 print_02d m;
40 Disp.print_char ’:’;
41 print_02d s;
42 ;;
43

44 (* Overflow utilities *)
45 let is_null () = !counter <= 0l and is_full () = !counter >= 359999l;;
46

47 (* Increments the counter by n *)
48 let incr n =
49 counter := Int32.add !counter (Int32.of_int n);
50 if is_full () then counter := 359999l;
51 ;;
52

53 (* Decrements the counter by n *)
54 let decr n =
55 counter := Int32.sub !counter (Int32.of_int n);
56 if is_null () then counter := 0l;
57 ;;
58

59 (* Increments/Decrements the counter by 1 *)
60 let decr1 () = if not (is_null ()) then counter := Int32.pred !counter;;
61 let incr1 () = if not (is_full ()) then counter := Int32.succ !counter;;
62

7

63 (* Speed-up functions for time setting *)
64 let step n = n / 32 * n / 16 * n + n / 16 * n / 16 + n / 8 + 1;;
65

66 (* Small states machine *)
67 let rec run n =
68 if is_null () || test_bit RB0 then stop ()
69 else if test_bit RB1 then (incr_start () ; run 0)
70 else if test_bit RB2 then (decr_start () ; run 0)
71 else if n = 79 then (Sys.sleep 7 ; decr1 () ; print () ; run 0)
72 else (Sys.sleep 10 ; run (succ n))
73 and pause () =
74 Sys.sleep 10;
75 if test_bit RB0 && not (is_null ()) then start ()
76 else if test_bit RB1 then (incr_start () ; pause ())
77 else if test_bit RB2 then (decr_start () ; pause ())
78 else pause ();
79 and start () =
80 set_bit RB3;
81 Sys.sleep 10;
82 if test_bit RB0 then start () else run 0;
83 and stop () =
84 clear_bit RB3;
85 Sys.sleep 10;
86 if test_bit RB0 then stop () else pause ();
87 and incr_start () =
88 incr1 ();
89 print ();
90 Sys.sleep 300;
91 incr_loop 1;
92 and decr_start () =
93 decr1 ();
94 print ();
95 Sys.sleep 300;
96 decr_loop 1;
97 and incr_loop n =
98 if test_bit RB1 then (
99 incr (step n);

100 print ();
101 Sys.sleep 100;
102 if not (is_full ()) then incr_loop (succ n);
103)
104 and decr_loop n =
105 if test_bit RB2 then (
106 decr (step n);
107 print ();
108 Sys.sleep 100;
109 if not (is_null ()) then decr_loop (succ n);
110)
111 in
112 write_reg TRISB 0b00000111; (* Configure button pins as input *)
113 print (); (* Display 00:00:00 *)
114 stop (); (* Entry point of the state machine *)

PIC configuration:
Create the same configuration file config.asm as in section 3.1.

Virtual circuit:
The plug-in which enables circuit simulation takes as parameter a file name contain-

ing the circuit description in a rather intuitive format. Place the following definitions in a
circuit.txt file:

1 window width=270 height=220 title="Timer"
2

3 button x=85 y=40 width=40 color=black label="START" pin=RB0
4 button x=135 y=55 width=20 height=20 label="+" pin=RB1
5 button x=135 y=25 width=20 height=20 label="-" pin=RB2
6

7 led x=175 y=55 pin=RB3 color=green
8 led x=175 y=25 pin=RB3 inverse=true
9

10 lcd x=10 y=100 column_nb=8 line_nb=1 e=RD0 rs=RD2 rw=RD1 bus=PORTC

8

Compilation:
Compile timer.ml → timer, timer.asm :

ocapic 18f4620 config.asm timer.ml

Assemble timer.asm → timer.hex :

gpasm -y timer.asm

Simulation:
Execute:

./timer ’ocapic_circuit_simulator circuit.txt’

You should get a window similar to this one:

You can now simulate a user’s interaction with the timer by clicking +, - and START. To
stop simulation, hit Ctrl-C in the terminal window.

9

3.4 Communication with a computer

Communication between a computer and a PIC can be established thanks to the two mod-
ules Serial of the library (one for the PIC and one for the computer). They allow the direct
exchange of OCaml values between the program running on the computer and the program
running on the PIC.

The exchanged OCaml values between the two programs can be of any kind as long as it
makes sense. For example those values can be integers, strings or float numbers but also
more complex data structures such as lists, arrays, etc. The only forbidden values are those
containing code pointers such as closures. It is a true exchange of memory graph, values may
contain cycles.

Communication is protected from transmission errors, accidental unplugging, etc. Fur-
thermore, memory overflow and collisions in the protocol are correctly managed and trans-
lated into exceptions.

If you don’t have a serial port on your computer, you may use a USB/Serial converter.
The use of this library is entirely managed by the simulator.
The precise documentation of each function is in manpages.

Here is an example of how to drive an LCD display connected to the PIC from an OCaml
top-lever running on a computer:

OCaml source code for the Computer:
Place the following source code in a sender.ml file, adapting if needed the file path corre-

sponding to the serial port (here /dev/ttyUSB0):

1 open Serial;;
2

3 (* Type of values transfered from the computer towards the PIC *)
4 type t = Clear | Moveto of int * int | Int of int | Text of string
5

6 (* Communication channel with the PIC via the serial port *)
7 let (chan : (t, unit) channel) = open_tty "/dev/ttyUSB0";;
8

9 (* Utilities *)
10 let clear () = send chan Clear;;
11 let moveto l c = send chan (Moveto (l, c));;
12 let print_int i = send chan (Int i);;
13 let print_string s = send chan (Text s);;

OCaml source code for the Computer (simulation mode):
Place the following code in a simul.ml file:

1 open Serial;;
2

3 (* Type of values transfered from the computer towards the simulator *)
4 type t = Clear | Moveto of int * int | Int of int | Text of string
5

6 (* Communication channel with the simulator *)
7 let (chan : (t, unit) channel) =
8 open_prog "./usart ’ocapic_lcd_simulator 16x2 e=RD0 rs=RD2 rw=RD1 bus=PORTB’"
9 ;;

10

11 (* Utilities *)
12 let clear () = send chan Clear;;
13 let moveto l c = send chan (Moveto (l, c));;
14 let print_int i = send chan (Int i);;
15 let print_string s = send chan (Text s);;

10

OCaml source code for PIC :
Place the following code in a usart.ml file, adapting if needed the given argument to the

open_channel function (here 34 for 57600 baud) according to the rate of your serial port
(please refer to the pic documentation for the full conversion list).

1 open Pic;;
2 open Lcd;;
3 open Serial;;
4

5 (* PIC clock speed-up *)
6 set_bit IRCF1;; set_bit IRCF0;; set_bit PLLEN;;
7

8 (* PIC/LCD display connection configuration *)
9 module Disp = Connect (

10 struct
11 let bus_size = Four
12 let e = LATD0
13 let rs = LATD2
14 let rw = LATD1
15 let bus = PORTB
16 end
17);;
18

19 (* Initialization and configuration of the display *)
20 Disp.init ();; Disp.config ~cursor:Underscore ();;
21

22 (* Type of values transfered from the computer towards the PIC *)
23 type t = Clear | Moveto of int * int | Int of int | Text of string
24

25 (* Communication channel with the computer *)
26 let (chan : (unit, t) channel) = open_channel 34;; (* 57600 bauds *)
27

28 (* Loop : command reception / transmission to the display *)
29 while true do
30 match receive chan with
31 | Clear -> Disp.clear ()
32 | Moveto (l, c) -> Disp.moveto l c
33 | Int i -> Disp.print_int i
34 | Text t -> Disp.print_string t
35 done

PIC configuration :
Create the same configuration file config.asm as in section 3.1.

Compilation:
Remark : if you have installed the OCaPIC library somewhere else than in /usr/lib,

modify the access path accordingly.

Compile sender.ml → sender.cmo :

ocamlc -I /usr/lib/ocapic/extra -c sender.ml

Compile simul.ml → simul.cmo :

ocamlc -I /usr/lib/ocapic/extra -c simul.ml

Compile usart.ml → usart, usart.asm :

ocapic 18f4620 config.asm usart.ml

Assemble usart.asm → usart.hex :

gpasm -y usart.asm

11

Simulation :
Launch the command:

ocaml -I +threads -I /usr/lib/ocapic/extra unix.cma threads.cma
serial.cmo simul.cmo

This opens an OCaml top-level allowing you to call functions from the Simul module which
you’ve just created, as well as a window representing the LCD display connected to the PIC.
You then have control over the LCD display by writing commands in the top-level such as:

open Simul;;
print_int 42;;
moveto 2 6;;
print_string “Hello”;;

To end the simulation, kill the OCaml top-level by hiting Ctrl-D.

Circuit:
Since the logical levels of the PIC (0V/5V) are not the same as those of the serial port

(10V/-10V), use the integrated circuit MAX232 to make conversions. The connection to the
LCD display is done as in section 3.2 :

Run :
After transfering the usart.hex file on the PIC, connecting the serial port to the circuit

and supplying the circuit with 5V, run in the terminal window:

ocaml -I +threads -I /usr/lib/ocapic/extra unix.cma threads.cma
serial.cmo sender.cmo

You then get a new OCaml top-level with which you can control the LCD display via the
Sender module. You should get the same behavior as in the simulator, with the difference
that now you are operating the real LCD display connected to the PIC !

12

4 Advance use

4.1 Virtual machine settings

Several programs may need a setting for the OCaml heap’s or stack’s size. On the PIC18F4620,
default settings are 174 levels in the stack and 1792 bytes for the heap.

Adjustments of the size of the heap and stack takes place during the link step when calling
ocapic. The ocapic command has two options -stack-size and -heap-size. Each one
takes as argument the number of 256 bytes segments allocated either to the heap or the
stack.

For example, running:

ocapic 18f4620 -stack-size 3 -heap-size 6 config.asm hw.ml

defines 430 levels of stack and 1536 bytes of heap.

In the following table, we describe all possible configurations allowing the use all the PIC
registers for the OCaml’s stack and heap. Those values may reduce in case of interfacing with
assembler code needing more than 15 bytes of memory. For further details, please refer to
section 4.2.

-stack-size -heap-size number of stack levels size of heap (in bytes)
1 7 174 1792
3 6 430 1536
5 5 686 1280
7 4 942 1024
9 3 1198 768
11 2 1454 512
13 1 1710 256

One can note that freeing a heap segment allows to use two for the stack. This is due to the
virtual memory manager based on the Stop & Copy algorithm, which divides by 2 the heap’s
usable size.

4.2 Binding with assembler code

It is possible to interface OCaml code with PIC assembler code. This assembler code may
even have been generated by another compiler, provided we have some control over the labels
generated by the compiler.

On the OCaml size, interfacing is done with the keyword external. The external function’s
name is then the assembler code’s label. The assembler code should be written in one (or
several) .asm files and given to the ocapic command at link step.

A quick example:

OCaml source code:
Place the following code in a mask.ml file:

1 external mask_portb : int -> int -> unit = "mask_portb";;
2

3 Pic.write_reg Pic.TRISB 0x00;; (* PORTB as output*)
4 Pic.write_reg Pic.PORTB 0x00;; (* PORTB <- 0 *)
5

6 for i = 1 to 100 do
7 mask_portb i 0xF0; (* Execute the external code *)
8 Sys.sleep 1000; (* Waits 1s *)
9 done

13

Assembler source code:
Place the following external function code mask_portb in a ext.asm file :

1 mask_portb:
2 rrcf ACCUH, W ; PORTB <- Long_val(ACCU)
3 rrcf ACCUL, W
4 movwf PORTB
5 rrcf [0x2], W ; PORTB <- PORTB ^ STACK[0]
6 rrcf [0x1], W
7 xorwf PORTB, F
8 clrf ACCUH ; return ()
9 movlw 0x1

10 movwf ACCUL
11 return

C source code:
In order for the simulator to work, the mask_portb function’s assembler code must be

recoded in C. Place the following code in a ext.c file:

1 #include <caml/mlvalues.h>
2

3 /* Simulator’s internal function */
4 /* Writing in a special register of the PIC */
5 value caml_pic_write_reg(value vreg, value vval);
6

7 /* C Version of the mask_portb function */
8 value mask_portb(value v1, value v2){
9 caml_pic_write_reg(Val_long(0x01), Val_long(Long_val(v1) ^ Long_val (v2)));

10 return Val_unit;
11 }

PIC configuration:
Create the same configuration file config.asm as in section 3.1.

Compilation:
Compile mask.ml, ext.c, ext.asm → mask, mask.asm :

ocapic 18f4620 config.asm mask.ml ext.c ext.asm

Assemble mask.asm → mask.hex :

gpasm -y mask.asm

Simulation:
Run the following command:

./mask ’ocapic_dip40_simulator’

You should get a window looking like this:

14

4.3 Interruption catching

As we can see in the Pic module’s manpage of the standard library, two functions allow to
operate on the PIC’s hardware interruptions from OCaml :

1 (* Registers the interruption handler *)
2 val set_interruption_handler : (bit -> unit) -> unit
3

4 (* Removes the interruption handler *)
5 val clear_interruption_handler : unit -> unit

Catching up those interruptions is similar to catching up Unix signals. The function
set_interruption_handler allows to register an OCaml function of type bit -> unit. This
handler is called each time an interruption occured with as argument the special register’s bit
corresponding to the interruption. You can refer to the PIC’s documentation to know the cor-
respondance between interruptions and bits. For example, the bit matching the interruption
generated by a state change for the B0 pin is INT0F.

As for the standard management of Unix signals in OCaml, an interruption can not be
managed while an external function is running. Therefore, the wait before an interruption is
managed is not equal to a machine cycle (as it is in most cases when coding in assembler for
PIC), but is equal to an OCaml virtual machine cycle. This may cause reactivity problems in
case of long external calls, such as a call to the Sys.sleep function.

Moreover, an interruption management can be interrupted by another interruption man-
agement, but not by the management of the same interruption. The behavior is once again
similar to those of signals.

We notice that we can register only one interruption catcher at a time, which may first
appear as a restriction. In fact it is not, as it is shown in the following example.

The following program simulate a kind of parallel run. Indeed, on one hand, a small
counter increments itself regularly on the display. On the other hand, a second counter is
incremented at each electric impulse sent by the user on the B0 pin. Note that a short generic
library of interruption management is defined.

OCaml source code
Place the following code in a interrupt.ml file:

1 open Pic;;
2

3 (* Speed-up of the PIC clock *)
4 set_bit IRCF1;; set_bit IRCF0;; set_bit PLLEN;;
5

6 (* Configuration of the connection to the LCD display *)
7 module Disp = Lcd.Connect (
8 struct
9 let bus_size = Lcd.Four

10 let e = Pic.LATD0
11 let rs = Pic.LATD2
12 let rw = Pic.LATD1
13 let bus = Pic.PORTC
14 end
15);;
16 open Disp;;
17

18 init ();;
19 config ();;
20

21 (* Short generic library for the management of interruptions *)
22

23 type interruption_behavior =
24 | Interruption_ignore
25 | Interruption_handle of (bit -> unit)
26 ;;
27

28 let handlers = ref [];;
29

30 let the_handler bit =
31 try (List.assq bit !handlers) bit
32 with Not_found -> ()
33 ;;
34

35 let interruption bit ib =

15

36 let old =
37 try
38 let old = Interruption_handle (List.assq bit !handlers) in
39 handlers := List.remove_assq bit !handlers;
40 old
41 with Not_found -> Interruption_ignore
42 in
43 match ib with
44 | Interruption_ignore -> old
45 | Interruption_handle f ->
46 set_interruption_handler the_handler;
47 handlers := (bit, f) :: !handlers ; old
48 ;;
49

50 let set_interruption bit ib = ignore (interruption bit ib);;
51

52 (* Using the short library *)
53

54 (* A specific handler *)
55 let my_handler =
56 let counter = ref 0 in
57 fun _ ->
58 let (li, co) = current_position () in
59 moveto 2 0;
60 print_string " ";
61 moveto 2 0;
62 Printf.fprintf output "Interruption %d" !counter;
63 incr counter;
64 moveto li co;
65 Sys.sleep 100;
66 ;;
67

68 (* Activation of the INT0 interruption for the PIC *)
69 set_bit INT0E;;
70 set_bit GIE;;
71

72 (* Registration of the handler *)
73 set_interruption INT0F (Interruption_handle my_handler);;
74

75 (* Regular increment of a counter *)
76 while true do
77 for i = 0 to max_int do
78 clear_bit GIE; (* Beginning of a mutual exclusion area *)
79 moveto 1 0; (* (to avoid display collision) *)
80 Printf.fprintf output "Loop %d" i;
81 set_bit GIE; (* End of the mutual exclusion area *)
82 Sys.sleep 100;
83 done
84 done

Compilation
Compile interrupt.ml → interrupt, interrupt.asm :

ocapic 18f4620 config.asm interrupt.ml

Assemble interrupt.asm → interrupt.hex :

gpasm -y interrupt.asm

You should get the interrupt.hex file to transfer on the PIC. Connect an LCD display
to the PIC as usual. While the program is running, you can send impulses to the B0 pin to
increment the second counter, in parallel to the first one which increments regularly.

16

Contents

1 Introduction 2

2 Installation 2
2.1 Prerequisites . 2
2.2 Downloading . 2
2.3 Installation . 2

3 Use examples 3
3.1 Blink a LED . 3
3.2 Hello world on an LCD display . 5
3.3 A small timer . 7
3.4 Communication with a computer . 10

4 Advance use 13
4.1 Virtual machine settings . 13
4.2 Binding with assembler code . 13
4.3 Interruption catching . 15

17

