Experiments with SPOC

Mathias Bourgoin - Emmanuel Chailloux - Jean-Luc Lamotte

January 24th, 2012

UPMC

18A1 SORBONNE

SPOC: Stream Processing with OCaml

SPOC

~ \/\ n
N
Kream processmg

with OCaml

@ An OCaml Library
@ Managing Cuda/OpenCL kernels
@ Managing transfers between Host and Guests automatically

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012

2/25

OCaml

@ High-Level language
o Efficient Sequential Computations
Statically Typed
Type inference
Multiparadigm (imperative, object, functionnal, modular) 0 TN
Compile to Bytecode/native Code vyes wuCANNER
Memory Manager (very efficient Garbage Collector)
Interactive Toplevel (to learn, test and debug)
o Interoperability with C

@ Portable

e System : Windows - Unix (OS-X, Linux...)
o Architecture : x86, x86-64, PowerPC, ARM. ..

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 3/25

OCaml

@ High-Level language
o Efficient Sequential Computations

o Statically Typed

]

o Multiparadigm (imperative, object, functionnal, modular) ’“‘

° 2300 wCANNER
o Memory Manager (very efficient Garbage Collector)

]

o Interoperability with C

@ Portable
e System : Windows - Unix (OS-X, Linux...)
o Architecture : x86, x86-64, PowerPC, ARM. ..

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 4/25

Motivations

OCaml and GPGPU complement each other

GPGPU frameworks are Ocaml is
@ Highly Parallel @ Mainly Sequential
@ Architecture Sensitive @ Multi-platform/architecture
@ Very Low-Level @ Very High-Level

@ Allow OCaml developers to use GPGPU with their favorite language.

@ Use OCaml to develop high level abstractions for GPGPU.
@ Make GPGPU programming safer and easier

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 5/25

SPOC Overview

OCaml meets GPGPU

@ OCaml developers can now use GPGPU programming
@ SPOC allows to easily develop efficient GPGPU applications

o Abstracted frameworks (Cuda/Opencl)
o Automatic transfers

o Kernel type safety

o Efficient memory manager

@ Can also be used as a tool for non OCaml developers

@ OCaml can be used to quickly express new algorithms
o Still possible to use C externals. ..

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 6/25

Benchmarks - 1

Spoc easily speeds OCaml programs up

Mandelbrot

@ Naive implementation
@ Non optimized kernels

@ Graphic display handled by CPU

Mandelbrot
Intel i7 AMD 6950 | Tesla C2070 C2070+6950 C2070+6950
1 Core 4 Cores OpenCL Cuda Cuda+OpenCL OpenCL
GFLOPS SP - 102.4 2250 1030 - -
C 892s 307s SPOC 12.84s 10.99s 6.56s 6.66s
Speedup - 1 23,91 27,93 46,80 46,10

opencl kernel not vectorized

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6)

Experiments with SPOC

January 24th, 2012

7125

Benchmarks - 2

OCaml+Spoc runtime+GC overhead

Matrix Multiply SP

@ optimized kernel
@ Nvidia — Cublas sgemm

o’

Matrix Multiply SP

Matrix Multiply | Matrix Multiply
Matrix size 21000 25000
Maximum memory needed 5.2GB 7.5GB
GFLOPS 156 139

A\

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC

8/25

Main Objectives

Goals

Allow use of Cuda/OpenCL frameworks with OCaml

Abstract these two frameworks
Abstract memory

Use OCaml type-checking to ensure kernels type safety

°

°

@ Abstract memory transfers

°

@ Propose Abstractions for GPGPU programming

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 9/25

Main Objectives

Goals

Propose Abstractions for GPGPU programming

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 10/25

Kernel Composition

Composition
Compose multiple kernels to express algorithms

@ Ease programming
@ Allow new automatic optimizations

Spoc allows only to use external kernels.
To be composable, kernels must have an input/output

A\

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 11/25

Skeletons

Problem

Spoc allows only to use external kernels.
To be composable, kernels must have an input/output

Work in progress
Describe Skeletons as :
@ a kernel

@ an execution environment
@ an input
@ an output

Compose skeletons

v

run : skeleton — device — vector — vector \

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 12/25

Skeletons

Skeletons

@ map : kernel — env — vector — skeleton
@ reduce : kernel — env — vector — skeleton

@ pipe : skeleton — skeleton — skeleton

@ par : skeleton — skeleton — skeleton

y

run : skeleton — device — vector — vector \

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 13/25

Example

Power lteration

while (iter<IterMax)&&(max_n > eps) do
let x=A»x0 in
let m = max(x)in
let x=u/m in
let n = abs(x — x0) in
max_n <— max(n);
x0<—=x;iter<—iter+1;
done

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 14 /25

Example

Power lteration

while (iter<IterMax)&&(max_n > eps) do
let x=A+x0 in
let m = max(x)in
let x=u/m in
let n = abs(x — x0) in
max_n <— max(n);
x0<—=x;iter<—iter+1;
done

while
let
Jle]t
let
let

max_

(iter<IterMax)&&(max_n > eps) do
x= run (map (= x0)) A in

m = run (reduce (max)) x in

x= run (map (/ m)) u in

n = run (map (abs)) (x=0) in

n <— run (reduce max) ;

x0<—=x;iter<—iter+1;

done

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC

January 24th, 2012

15/25

Example

Power lteration

while (iter<IterMax)&&(max_n > eps) do
let x=A»x0 in
let m = max(x)in
let x=u/m in
let n = abs(x — x0) in
max_n <— max(n);
x0<—=x;iter<—iter+1;
done

while (iter<IterMax)&&(max_n > eps) do
let x= run (map (= x0)) A in
let m = run (reduce (max)) x in
let x= run (map (/ m)) u in
let n = run (map (abs)) (x—=x0) in
max_n <— run (reduce max) n;
x0<—=x;iter<—iter+1;

done

done

while (iter<IterMax)&&(max_n > eps) do
let m= run (pipe (map (*x0)) (reduce max))<—

(map (/ m)

(abs(— x0)))))
(reduce max)) u;

x0<=x;iter<—iter+1;

A in
max_n <— run (pipe
(pipe
(map

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6)

Experiments with SPOC

January 24th, 2012

16/25

Benefits

Benefits

@ Explicitely describe relation between kernels/data
@ Automatic blocks/grids mapping on GPUs

@ Optimize data location (GPUs/CPU)

@ Optimize automatic transfers

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 17/25

More Composition

Parallel Skeleton
par_run : skeleton — device list — vector — vector

Benefits

@ Automatic blocks/grids mapping on GPUs
@ Optimize data location (GPUs/CPU)
@ Optimize automatic transfers

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 18/25

Previous Benchmarks

Mandelbrot

Tesla C2070
Spoc 10.99s
Map Skeleton 10.99s

Skeletons keep performance

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6)

Experiments with SPOC

January 24th, 2012

19/25

Examples

To test skeleton compositions we used small kernels which do only basic tasks

Power lteration
Two skeleton compositions

Game of Life

Each computed generation becomes the input of next computation
Two versions:

@ Game1 : Each generation computed is brought back to CPU memory
@ Game2 : Only the final generation is brought back

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 20/25

Game of Life

Game of Life

Each computed generation becomes the input of next computation
Two versions:

@ Game1 : Each generation computed is brought back to CPU memory
@ Game2 : Only the final generation is brought back

for i = 1 to last_generation do
let current_generation = run (map (game_of_life)) last_generation in
draw current_generation;

last_generation <— current_generation;
done

let rec compose i ¢ =

if i =1 then ¢

else compose (i—1) (pipe ¢ (map game_of_life)) in
let final_generation =

run (compose generations_count (map game_of_life))) first_generation in
draw final_generation;

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 21/25

Examples

Benchmarks

Ocaml (1 thread) Spoc speedup
Power lteration 1654.29s 382.77s x4.32
Gamel 244.24s 33.34s X7.32
Game2 244.24s 4.88s x50.05

Current Limitation
@ Reduce currently sequential

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6)

Experiments with SPOC

January 24th, 2012

22/25

Conclusion

Conclusion

Spoc allows GPGPU programming with OCaml

Skeletons help expressing algortihms

°
@ Skeletons help automatic optimization
@ Work in progress

°

Already show promising results

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 23/25

Future Work

Embedded Language

@ Describe full GRGGU kernel
@ Automatic kernel generation from vector skeletons
@ Describe kernels with

o input

@ output

o global environment

@ Modify current skeletons with embedded language

@ More skeletons

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC January 24th, 2012 24/25

Thanks

i UPMC pp

1AM SORBONNE
Emmanuel Chailloux
Jean-Luc Lamotte

SPOC sources : http://www.algo-prog.info/spoc/
Spoc is compatible with x86-64: Unix (Linux, Mac OS X), Windows

For more information
mathias.bourgoin@lip6.fr

— . . /N
'.‘ SYSTeMATIC LG Ter@tec
PARIS REGION SYSTEMS & ICTCIUSTER s m m @ ® \)
dSCIS hauts-de-seine
LE CONSEIL GENERAL CONSEIL GENERAL

M. Bourgoin - E. Chailloux - J-L. Lamotte (UPMC-LIP6) Experiments with SPOC

January 24th, 2012 25/25

http://www.algo-prog.info/spoc/
mailto:mathias.bourgoin@lip6.fr

	SPOC
	OCaml
	Motivations
	SPOC Overview
	Benchmarks

	Kernel Composition
	Skeletons
	Example
	benchmarks

	Conclusion

